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A Schwinger variational principle has been derived for use in quantum, many- 
body systems at finite temperatures. The variational principle is a stationary 
expression for the density matrix which may be iterated to improve an approxi- 
mate density matrix. It also can be used to find stationary expressions for 
observables. If an approximate, parametrized density matrix is used, the parame- 
ters are varied to find the regions where the variational principle is stationary. 
The variational density matrix obtained with the optimal parameters can be 
regarded as optimal for that observable. The method has been applied to two 
model problems, a particle in a box and two hard spheres at finite temperatures. 
The advantages and shortcomings of the method are discussed. 

KEY WORDS: Bloch equation; quantum systems; Schwinger variational 
principle. 

1. INTRODUCTION 

Variational calculations of the properties of ground-state condensed 4He 
have been of great importance in studying this significant many-body 
quantum system. (0 The calculations use the Monte Carlo technique of 
Metropolis et al. ~2) to yield a strict upper bound to the energy within a 
statistical uncertainty which can be made small. The variational method 
allows the use of parametrized trial wave functions and elucidates the 
physics embodied in these wave functions. For example, several recent 
variational calculations (3) showed the importance of three-body correla- 
tions in the wave-function for liquid 4He. Variational calculations are also 
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useful as a means of finding optimized importance functions used to 
accelerate convergence in exact G F M C  computations (4~ of ground-state 
properties. 

Heretofore, however, no variational method has been applied to 
strongly interacting finite-temperature quantum systems. (5) We propose a 
method for such systems based upon the Schwinger variational principle. (6) 
In Section 2 we describe the derivation of the variational principle and a 
general discussion of its application. Section 3 shows the method applied to 
two model systems at finite temperatures: a particle in a one-dimensional 
box and two hard spheres in a three-dimensional box. 

2. DERIVATION OF THE VARIATIONAL PRINCIPLE 

The equilibrium properties of quantum systems at finite temperatures 
may be inferred from knowledge of the density matix which, in coordinate 
space, may be described by 

oB ( R, Ro ; ,8) = ~ ~ ( Ro)~ ( R )e - t~ek (1) 
k 

For an N-body system, R and R 0 are vectors in 3N-dimensional Euclidean 
space (configuration space) and fl equals 1/keT. The ~k, k = 0, 1 , 2 . . .  
are the complete eigenfunctions of the Hamiltonian H with eigenvalues E k. 
Properly symmetrized states for Fermi-Dirac or Bose-Einstein statistics 
may be constructed from them. The density matrix for Bose-Einstein 
statistics is 

OB (R, R 0 ; fl ) = ~2 ~2 t)ff (Ro)~k(PR)e -ZEk 
P k 

where P is a permutation. For Fermi-Dirac statistics the density matrix 
becomes 

PB (R, R o ; fl ) = ~ ~ (P) -II~Z (Ro)t~k(PR )e-ZEk 
P k 

where (P)-~ is + 1 for even permutations and - 1  for odd permutations. 
The density matrix satisfies a differential equation, the Bloch equation, 
which is 

( HR + -~fl )pB( R, Ro ; fl ) = O (2) 

o r  

I-v:+ v(R)+ 1o.(R, Ro; r 
Here hZ/21.t = 1 ; - V 2 is the Laplacian in full coordinate space and V(R) is 
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the full, many-body potential. At fi = 0, the density matrix satisfies the 
boundary condition 

pe (R, R o ; O) = ~ ~Z (Ro)+k(R ) = 8(R - Ro) (3) 
k 

and so pB(R, Ro; fl) is Green's function for H R + O/Off. 
Suppose we introduce a trial density matrix, or(R, R0; fl), which also 

satisfies the condition 

pr(R, Ro ;0) = 8(R - Ro) (4) 

We may write an integral equation for pB(R, Ro; fi) in terms of the trial 
density matrix as 

pB(R, Ro; f l )=pT(R,  Ro; fl) 

los [ - ~ d R ' d f i ' o ~ ( R , e ' ;  f i - f i ' )  -V'~+ V(R')+5--fi7 

x oT(R',  Ro ; fi') (5) 

Equation (5) may be shown correct by applying the Bloch operator to both 
sides. Also, when fl becomes zero the integral becomes zero and pr(R, R0; 
O) = pB(R, Ro; 0) = ~(R - R0). A variational principle may be derived from 
Eq. (5) by replacing p~(R,R'; fi - fl') by pr(R,R'; fi - fi') in the integral 
to yield 

Z)= 0~(R,R0; Z)-s B-Z') p,( R, Ro ; 

• - V  '2+ V ( R ' ) + ~  pr(R' ,R o;fi ')  (6) 

To see that this is indeed variational, i.e., that p, is correct to second order 
in the departure in Pr from Ps, set 

pr(R,  R0 ; fl) = pB(R, Ro ; fl) + epl(R,R 0 ; fl) (7) 

where pl(R, Ro; fi) is some function satisfying pt(R, R0; 0 ) =  0. Upon sub- 
stituting Eq. (7) for Or in Eq. (6) we find 

P,(R, Ro; fl) 

= PB(R, Ro ; fi) + r Ro ; fl) 

• - V ' 2 +  Y(R ' )+f f~7  [PB(R',Ro; fi')+ep1(R',Ro;]3')1 

The term involving the Bloch operator acting on PB in the integral drops 
out immediately, leaving terms of order e and e 2. Recognizing that the 
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o p e r a t o r  - ~ 7 2 - - [  - V(R)  is Hermitian, and performing an integration by 
parts on the fl '  integral, we may eliminate all terms of order e. The resulting 
equation is 

p,(R, R0; fl ) = OB( R, Ro ; fi ) + O(e 2) (8) 

So Eq. (6) is a stationary expression for the density matrix itself. 
The variational principle embodied in Eq. (6) has some interesting 

characteristics. Applying the principle to a trial density matrix produces a 
new density matrix which in the sense of Eq. (8) is a better approximation 
to PB" In addition, the variational principle is stationary with respect to 
changes in the trial density matrix. If Pr is a function with some parame- 
ters, we may look for those values of the parameter(s) for which p, has 
either a saddle point, a maximum, or a minimum. This contrasts with 
variational methods used in ground-state problems where expectation val- 
ues are guaranteed to be upper bounds to the exact answer and a minimum 
in the energy is sought as parameters are varied. Thus the method proposed 
here requires greater computational efforts than in standard ground-state 
variational calculations. 

Variational estimates of properties of the system can be obtained. 
Suppose we are interested in the expectation of a function f (R)  for a Bose 
system. An estimate is determined by multiplying Eq. (6) by f(R),  integrat- 
ing over R, and summing over all possible permutations P as follows: 

F v = ~ d R  f(R)pv(PR, R; fl) 
p,- ,  

= ~ fdR f(R )pr(PR, R; fi) 
P 

- E fo' f f dB' dRdR'1(R B - Z') 

Fv will be stationary with respect to variations in Or, as well. The trial 
density matrix for which F~ is stationary can be regarded as an optimal Or 
for the observable. The normalization of 0~ is unknown and varies with Or, 
but this shortcoming can be dealt with effectively as follows. Expectations 
are defined by the quotient 

y~pf dR f ( R  )p,(PR, R; fl ) 
F~ = ~,pf dRpv(PR, R; fl) (10) 

since both the numerator and the denominator are stationary with respect 
to variations in Or, the quotient will also be stationary. We will therefore 
use Eq. (10) to calculate variational estimates in our model problems. 
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To apply Eq. (9) or (10) to a system at finite temperatures modeled 
explicitly on a many-body level will generally require the use of Monte 
Carlo techniques. It is not obvious what Monte Carlo procedure will work 
best for the variational expression since the terms involving pr(PR, R; fi) 
and pr(PR, R'; f l -  fl') x ( - V  '2 + V+ ~/~fl') • pr(R',R; fi') are on dif- 
ferent spaces and are likely to be rather different functions of R and PR. 
We decided to rewrite Eq. (9) as one multiple integral by multiplying the 
pr(PR, R; fi) term by arbitrary normalized, probability distribution func- 
tions X(R') and B(fl') and then integrating over R '  and fi'. That is, we 
work in the full product space and Eq. (9) becomes 

Ov(eR, R; B ) =  fooef (O~(t'R,R; ~ ) X ( R ' ) B ( B ' )  

- 0 r ( e e ,  R'; B -- B') -- V '2 + V(e ' )  + 

pr(R',R; fl') ) dR'dfi' (11) X 

Note that in the first term of the integral, pr(PR, R; fi) does not depend on 
R '  or fl', so the structure of Eq. (9) has not been altered. The integral is 
now in a form which can now be evaluated in a straightforward manner by 
using the algorithm of Metropolis et al. (2) 

In the normal application of the Metropolis algorithm to the evalua- 
tion of a many-dimensional integral, the integrand (or part of it) is sampled 
directly. However, in Eq. (11) the integrand is not manifestly nonnegative, 
which is a necessary condition for sampling. Therefore we must introduce a 
sampling function, p(R,R' ,P,  fi']fl) into the integral for the variational 
estimate of an expectation value 

Fo= 2 fo'f faB'dR'aR,~(.)p(n, n' , . ,  , 'IB) 

x {o,-(*'R,n; f i ) X ( R ' ) B ( ` 8 ' )  - OT(Pn, R';  fi -- `8') 

L ) /  ' x -v '2+v(n ' )+g~r  OT(R',R;`8') p ( e , n , e , B ' l ` 8 )  

- 1  

x ' a ` 8 ' a R ' a n p ( R , R , , e , ` 8 , 1 ` 8 )  

The Monte Carlo calculation will involve sampling p(R,R',P, ,8'1,8 ) by 
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using the Metropolis algorithm and then summing the quantity 

{OT(PR, R; B ) X ( R ' ) B ( B ' ) -  pT(PR, R'; f i - / ~ ' )  

t - v '~ + V(R') + O/O~'lOT(R',R; B')} 
f (R)  p(R,R',P, B'I~) (13) 

to obtain the numerator of Eq. (12). The same quantity without f(R) is 
used to obtain an estimate of the denominator of Eq. (12). The variational 
estimate of F~ is then the quotient of the sums of the quantities found in 
Eq. (13). This is an asymptotically unbiased estimate of F~. 

The better pr(PR, R; fl) approximates to ps(PR, R; fi), the smaller 
the contribution the second term of Eq. (11) will make. Thus the two terms 
of the integrand do behave differently even in the transformed variational 
expression Eq. (11). In the applications that follow, we do not analyze any 
further this aspect of the problem. We note in passing, however, that the 
different behavior of the two terms could be investigated by reweighted 
sampling. 

In summary, a variational principle involving a trial density matrix for 
use in finite-temperature problems has been developed. The principle does 
not yield an upper bound, but is stationary when the trial function mr is in 
the neighborhood of PB. We sketch how a Monte Carlo evaluation of the 
varitional principle could be accomplished and we will next apply the 
procedure to two model problems. 

. APPLICATION OF THE VARIATIONAL PRINCIPLE TO MODEL 
PROBLEMS 

The variational principle is first used in a solvable problem: a particle 
in a one-dimensional box. The Bloch equation for this is 

-_d 2 O 
dx 2 . ~ (x ,x ' ; /~ )+  ~ . B ( x , x ' ;  • ) = 0  

with 

(14) 

p~(x,x'; 0) = 8(x - x') 

The exact density matrix is given by 

1 ~ Qi(aix)Qi(aix,)e-,,Tr (15) o,~(x,x ' ;  B )  = Z i=1 

where L is the box side, Qi(x) is an eigenfunction Qi(x)= ( fL /2 )  I 
cos aix, of the corresponding Schr6dinger equation, and a 7 is the 
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associated eigenvalue, a 2 --(2k + 1)2II2/L 2. An alternative form of the 
density matrix can be derived from an image expansion. That is, one starts 
with the free particle density matrix and adds on correction terms (images) 
which correct for the presence of the hard walls, 

1 e-(X-X')2/4B 
Oe,(x,x'; / 3 ) -  (4ii/})1/2 

1 ~ - e-[2(2n-1)a-(x+x')]2/4B 
+ (4IIB) 1/2 ~=1 

__ e - [ 2 ( 2 n -  l)a+(x+x')]2/4B 

+ e-[4na+(x-x')]z/413 "st" e -[ -4na+(x-x')]2/4B (16) 

Either Eq. (15) or (16) can be used to calculate expectation values; Eq. (15) 
will converge faster at small /3 (high temperatures) and Eq. (16) will 
converge faster at large/3 (low temperatures). 

As a trial density matrix for use in the variational calculation, the first 
three terms of the image expansion, Eq. (16), were used, modified to ensure 
that the density matrix is zero at the end points, +_ a. 

e( X - X') Z / 4fl (1 - e ( x2 - 2ax + a2) / bB ) 
Or(X,X'; B ) -  (4n/3),/2 

X (1  - -  e (x'2-'ax'+a2)/bB) ( 1 7 )  

Here b is a parameter which may be varied to obtain stationary expectation 
values. 

Since we are dealing with only one particle, no sum over permutations 
occurs. The variational principle is simply 

Pv(X'Xo ; /3 ) = f O i l ;  ~ad/3' dX' pT(x 'XO ; /3 ) X  ( x t ) B (  /3 ') 

( -Or(x ,x ' ;  /3- /3 ' )  - V ' 2 +  - ~ 7 0 r ( x ' , x o ;  /3') (lSa) 

and 

-o -- :o" f_'. f_'.".' "-'"- :<-> 

{ [ '] x oT(X, Xo;/3)X(x')B(B') - oT(x,x';/3 - / 3 3  -v" + 5-F 

•  ,8)} / f~_adXO,(X, Xo; /3) (18b) 
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For the normalized probability density functions X(x') and B(fi ' )  we used 

1 
X ( x ' ) -  2a ' a d x ' =  1 

B(B')  = 1//•, fo ~ 1 -~d~'=l 
Equations (18) were evaluated using the algorithm of Metropolis et al. As 
described in Section 2, values of x, x', and fi' were chosen by using a 
sampling function p ( x , x ' ,  f l ' l f l ) ,  chosen here to be 

1,8)= {[o,(X, Xo; ,8- p ( x , x ' ,  

X ( - - 7  ,2 --I- +)PT(X',Xo;fi')]2} 1/2 (19) 

Variational estimates are then calculated 
N t 

~ i = ~ [  f ( x ) I ( x , x  , f l ' ) / p ( x , x  , ,8'1 f l ) ]  

r v 2 f = , [ i ( x , x , ,  t@' ) /P(x 'x ' f i ' l f i )  ] (20 )  

where I is the in tegrand of Eq. (18b). This choice of sampling funct ion was 

mot ivated by the behavior  of the in tegrand of Eq. (18b). W h e n  f l  - f l '  or 
f l '  is small and  x '  is close to x or x o, the in tegrand is a delta funct ion and  is 
very large in absolute magni tude.  The sampling funct ion should have 

similar behavior  to avoid large f luctuat ions in the value of the s u m m a n d  in 
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,:X 2) 0 . 1 4 -  

0.13 - 
i 

I 

0.12 L . . . . . . . . . . . . . . . . . . . . . . .  1 
2.5 5 3.5 4 4.5 5 5.5 

b 

Fig. 1. Values of (x 2) for the particle in a box as a function of the variational parameter b. 
The points with errors bars are from the Monte Carlo evaluation of the variational principle; 
the solid line is the exact results and the dotted line is values of (x 2) calculated with Pr- All 
results are at T = 17.857 K. 
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Eq. (20). Sampling the absolute value of I is a good choice when I can 
become negative. The ratio I / p =  +_ 1. 

In the application of the variational principle to the particle in a box, 
variational estimates were made of (x2),  the kinetic energy operator, 
( - -  V2>, and 0v. The calculations were performed at a variety of tempera- 
tures. The lowest-energy state of the system is at an energy of 14.952 K, the 
first excited state is at 134.57 K. Figure 1 shows values of ( x  2) as a 
function of the variational parameter b at T = 17.857 K, where only one 
state is populated. The dotted line represents (x  2) calculated with the trial 
density matrix, 0T, as a function of b; the solid line is the exact value and 
the points with error bars are the Monte Carlo estimate. As can be seen 
from the figure, the Monte Carlo results are stationary with respect to b, the 
variational parameter, and are close to the correct answer. Figure 2 shows 
the Monte Carlo estimates of (x  2) for a range of temperatures, and 
stationary behavior is observed in all cases. 

The kinetic energy operator was also estimated. When - 7  2 operates 
on the variational expression, a delta function is introduced for small 
f i - f l '  or fl '  and x near x'. The effect of this on the Monte Carlo 
evaluation of Eq. (18b) is to lead to large fluctuations in the terms of Eq. 
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Fig. 2. Values of <x 2) for the particle in a box as a function of the variational parameter at 
several temperatures. The points with error bars are from the Monte  Carlo evaluation of the 
variational principle and the solid lines are the exact results. 
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Fig. 3. The expectation value of the kinetic energy as a function of the variational parameter 
at several temperatures. The points with error bars are from the Monte Carlo calculation and 
the solid line is the exact results. 
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Fig. 4. Histogram representation of p(x,x; fl) at a temperature of T =  17.857 K. The solid 
line is pB(x, x, fl); the dotted line is Or(x, x; fl) and the shaded areas are 9~(x, x; B) showing 
_+ one standard deviation. A value of b = 4.5 was used in the calculation of 0r and G. 
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(20) and corresponding large statistical errors. Estimates of ( -  7 2) were 
computed by performing several Monte Carlo calculations of { - V 2) and 
computing an average weighted by their statistical errors. Figure 3 shows 
the Monte Carlo estimates of ( - V  2) as a function of b at several 
temperatures. Though the values are noisier than for (x2),  the behavior is 
still stationary and close to the exact value. As was mentioned earlier, the 
trial density matrix for which an observable is stationary can be considered 
the optimal PT" Thus, when b - -4 .0 ,  0T, Or, and OB are indistinguishable. 
The variational density matrix is stationary for all b's in the range 3.4 < b 
< 5.0. In Fig. 4, Ov(x,x;/3) for T =  17.857 K is compared with the exact 
density matrix and the trial density matrix for b = 4.5. The trial density 
matrix is a good representation of PB, and within statistics, Ov is seen to be a 
slight improvement on PT. 

In the one-dimensional example, the results of the application of the 
variational principle were encouraging. The method worked well at low 
temperatures where only one state was populated and continued to work at 
higher temperatures where 3 or 4 states were populated. Estimates of 
expectation values were stationary as a function of a variational parameter 
in the vicinity of the "best" choice of 0T, and Pv itself appeared to be an 
improvement on the best Or" The variational principle was next applied to a 
somewhat more interesting and realistic system, two particles in a three- 
dimensional box. 

The Bloch equation for the two-hard-sphere system is 

( -  V ~ -  V~ + ~-~-~ )oB(rl,r2,rol,ro2 ; /3) = 8(rl - rol)8(r2- r02)8( /3) 

(21) 

where 

Ps(rl,r2,rol,ro2 ;O) = 8(r I -- rol)8(r 2 - r02 ) 

The constraint on the system is that the hard spheres never overlap 

ps(r j , r  2 ' r  re,r02 ; /3) = 0, ]r 1 - r2],]r01 - r021 < a 

where a is the hard-sphere diameter. Periodic boundary conditions were 
enforced on the box walls. Exact results are available for the radial 
distribution function of two hard spheres in an infinite medium calculated 
by an eigenfunction expansion (v) and Green's function Monte Carlo. (8) If 
the size of the box in our model problem is much larger than the hard- 
sphere diameter, results from the variational calculation should be compa- 
rable with the exact results. 

There are two possible permutations in the two-body system, the unit 
or "direct" and pair or "exchange" permutation. The radial distribution 



400 WhiUock, Kalos, and Chester 

function may be written as a sum of two terms 

g(r, /3 ) = gdir ( r ,  /3 ) = gexch(r ,  /3 ) 

In the high-temperature limit galr(r,/3) goes to the classical pair correlation 
function and gexch(r, /3) approaches zero. The quantity gdir(r, /3) refers to 
the case when r = Irol - r021 = Irl - r2l, 

f d r l d t ' 2 P B ( r  I , r 2 , r  I , r  I ; / 3 ) ~ ( r  I - r 2 - r )  
gdi r ( r ,  /3)  = V 2e f  drldr2pe(rl,r2,Pr,,Pr2; /3) ( 2 2 )  

In our application of the Schwinger variational principle to the two-body 
system, we will investigate the radial distribution function obtained from 
the variational method. 

The trial density matrix used in the variational calculation is the same 
function that was used as an importance function in the Green's function 
Monte Carlo (s) study of the two-hard-sphere system. That density matrix 

Pr(rl , r2  ,r01 , r 0 2 ;  /3)  

= e - ( 1 ~  - ~21 - I~o, - ~o~t)  ~ / 4 / 8  

X ( 1 -  e x p ( - [ ( r , -  r2) 2 -  a2] [ ( r01-  r02) 2 -  a2]/ba2/3 }) (23) 

where b is again a variational parameter, is expected to reproduce the 
high-temperature behavior of the system reasonably well but contains no 
information about the physics at low temperatures. In particular, 0r is not 
expected to be accurate in r neighborhoods important to the exchange 
permutation. 

In the two-particle system, the variational estimate for any quantity of 
interest is given by Eq. (12), where R and R '  are six-dimensional vectors. 
The probability distribution functions X(R') and B(/3') are functions 
analogous to those used in the one-dimensional example. That is, B(/3') 
= 1//3 and X(R')= 1/(2L) 3, where L is now one half the box side. The 
sampling function is again the absolute value of the integrand of Eq. (11). 
The Metropolis algorithm is used to carry out the sampling of p(R, R', 
/3' I/3). The tendency in the calculation of the two-hard-sphere system is for 
the spheres to stay as far apart as is allowed by the periodic boundary 
conditions. The most interesting region for studying the radial distribution 
function is where the spheres are nearly touching, not the asymptotic 
region. Thus directed sampling was introduced into the Metropolis algo- 
rithm to improve the efficiency of the calculation of gdir(r). In the Metropo- 
lis sampling algorithm, a transition matrix T(R'IR ) is sampled to move 
from position R to R'. The usual choice for T(R' I R) is a constant interval 
about R in which the next R'  is selected uniformly. But there is no 
requirement that R'  be chosen uniformly and at random; any probability 
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distribution function can in principle be used. (9) We chose a transition 
matrix that encourages the two spheres to be near each other. That is, r'l, 
the new position of sphere, 1, is chosen randomly in the box. Then, 
r = ]r l - r2[ is sampled from the distribution function 

1 l / s -  1 rl /s_ 3 
r~(r) -  4H ( L - l / 3 -  1) 

where L is half the box side and s is some real number. The larger s is, the 
smaller r will be on the average. With this choice of the transition matrix, 
microscopic reversibility is ensured and the Metropolis algorithm samples 
p( R, R', fl' l fl ) asymptotically. 

The computations with the variational principle were done in detail at 
two temperatures, T =  38.85 K and T =  0.898 K. These temperatures 
correspond to the exact calculations in Refs. 7 and 8 at kr /a  = 1.4 and 
AT/a = 10, respectively, where X T is the thermal wavelength, [4qrfi/a2] 1/2. 
We would expect the variational calculation to give a better Pv at higher 
temperatures than at lower temperatures, and this is indeed borne out by 
experience. In Fig. 5, gdir ( r )  a t  dimensionless distance r/a = 1.55 is shown 
as a function of the variational parameter, b. Plotted as well in the figure is 
the behavior of the direct radial distribution function from the trial density 
matrix. A region in which the variational gait(r) is stationary is apparent 
and lies within statistics of the exact numerical result in that region. The 
variational gdir(r) is compared with the exact gait(r) in Fig. 6 for b = 9.0. 
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Fig. 5. The value of gdi~(r) for two hard spheres at r/a = 1.55 (a = size of hard sphere) as a 
function of the variational parameter for Ar/fl = 1.4. The points with error bars are from the 
Monte Carlo evaluation of the variational principle and the solid line represents the behavior 
of PT" 
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triangles are the GFMC results of Ref. 8. The hatched boxes are from the Monte Carlo 
evaluation of the variational principle; the open boxes are from a Monte Carlo calculation of 
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At the lowest temperature, 0r is not as good a representation of the 
exact density matrix. In Fig. 7, the variational gdir(r) at r / a  = 1.55 is 
plotted versus the variational parameter. Again, there is a saddlepoint 
region where the radial distribution function is stationary in b. However, 
when we compare the full variational gdir(r) with the exact values as in Fig. 
8, the agreement is not as good as at the higher temperature shown in Fig. 
6. The variational g d i r ( r )  is only a slight improvement over that derived 
from the trial density matrix but the variational principle cannot compen- 
sate for a poor choice of Or. 

Furthermore, the exchange contribution to the radial distribution 
function determined by the variational method exhibits the wrong behavior 
with large statistical errors. For example, at Xr/f l  = 10, the variational 
gexch(r) peaks at r / a  -- 1.75 with a value near 1. The exact gexch(r) peaks at 
r / a ~ 3 . 0  with a value near 0.2. This emphasizes the power of the GFMC 
method since it was possible to calculate gexch rather accurately in Ref. 8 
with the density matrix given in Eq. (23) as the importance function. An 
improved trial density matrix (s) was tried where the term e x p [ -  (] r I - rE1 - 

Irm - roEl)2//4fl] in Eq. (23) was replaced by e x p [ -  S2(Irl - rEI , lr01 - r02[ )  ] .  
The function S([r 1 - r21, Irm - r021) is the shortest distance between [r I - r2[ 
and Jr01- rOE [ such that [rl,rEl,[r m - r021 > a. This trial density matrix 
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variational principle; the open boxes are from a Monte Carlo calculation of g(r) using Or" 



404 Whitlock, Kalos, and Chester 

should allow more accurate determination of gexch; however, technical 
problems with the Metropolis sampling have precluded any results at this 
time. Work is in progress on a more robust version of the Monte Carlo 
method. 

In summary, a Schwinger variational method was developed for use in 
a finite-temperature system. The distinctive feature is that the variational 
principle is a stationary expression for the density matrix. Stationary 
expressions for observables in terms of a parametrized trial density matrix 
can be derived. The trial density matrix with the best values of the 
parameters is the optimal density matrix for that observable. The major 
shortcoming of the method is that variational estimates may be saddle 
points where Pv~PB, not upper or lower bounds. 

The variational principle was applied to two model systems, a particle 
in a one-dimensional box and two spheres in three-dimensional box. Very 
good results were obtained in the one-dimensional case due to the good 
choice for the trial density matrix. In the three-dimensional example, the 
direct radial distribution function was determined. Agreement with exact 
calculations was acceptable at high temperatures but poor at lower temper- 
atures. The exchange radial distribution function was poor at all tempera- 
tures. The behavior is a reflection of the poor choice for a trial density 
matrix. 

Possible future uses for the variational method could be as a screen for 
indicating the "best" of a class of parametrized trial density matrices. 

ACKNOWLEDGMENTS 

We are indebted to Larry Spruch for suggesting we use the Schwinger 
variational method in the finite-temperature problem. Some of this theory 
was worked out while M.H.K. and G.V.C. visited the Aspen Center for 
Physics and we thank the Center for its hospitality. This research was 
supported in part by the U.S. DOE Contract No. DEAC02-76ER03077 and 
in part by the National Science Foundation under Grant  No. DM7-77- 
18329. 

REFERENCES 

1. W. L. McMillan, Phys. Rev. A 138:442 (1965); R. D. Murphy and R. O. Watts, J. Low 
Temp. Phys. 2, 507 (1970); D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in 
Statistical Physics, K. Binder, ed. (Springer, Berlin, 1979), Chap. IV. 

2. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, J. Chem. 
Phys. 21:1087 (1953). 

3. K. Sehmidt, M. H. Kalos, M. A. Lee, and G. V. Chester, Phys. Rev. Lett. 45:573 (1980); 
C. C. Chang and C. E. Campbell, Phys. Rev. B 15:4238 (1977). 



A Schwinger Variational Method for the Bloch Equation 405 

4. M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester, Phys. Rev. B 24:115 (1981); 
P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 19:5598 
(1979). 

5. R. Peierls, Z. Phys. 80:763 (1933). 
6. J. Sehwinger, Phys. Rev. 72:742 (1947); J. Schwinger, Phys. Rev. 74:1439 (1948). 
7. S. Y. Larsen, J. Chem. Phys. 48:1701 (1968). 
8. P. A. Whitlock and M. H. Kalos, J. Comp. Phys. 30:361 (1979). 
9. J. M. Hammersley and D. C. Handscomb, Monte Caro Methods, (Wiley, New York, 1964), 

pp. 117-121. 


